Подготовка к ОГЭ по математике. Решение задач 26

Страницы: <<  <  2 | 3 | 4 | 5 | 6  >  >>

а сторона BC в 1,5 раза меньше стороны AB.







17. Задание 614799
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 60, тангенс угла BAC равен 43. Найдите радиус окружности, вписанной в треугольник ABC.
Решение:


САР ВСР, тогда tg BCP 43 BPCP
Пусть BP 4x, CP 3x, тогда BC 5x
RBCP BPCP-BC2 4x3x-5x2 x, x 60, значит BP 240, CP 180, BC 300
tg ВАС 43, ВСАС43, 300АС43, АС 225
АВ АС2ВС2 22523002 15152 15202 152(225400)
152625 15 25 375
RАВС АСВС-АВ2 225300-375275
Ответ: 75
18. Задание 5AAC95
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 96, тангенс угла BAC равен 815. Найдите радиус окружности, вписанной в треугольник ABC.
19. Задание 5D7862
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 24, тангенс угла BAC равен 34. Найдите радиус окружности, вписанной в треугольник ABC.

20. Задание 702E1A
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.






21. Задание D9953A
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM7 и MB9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Решение:

АВС - вписанный, АВС 12ᴗАС
АСD - угол между диаметром и хордой, АСD 12ᴗАС, следовательно АВС АСD
DBC DCA ( по двум углам; D - общий, DВС

Страницы: <<  <  2 | 3 | 4 | 5 | 6  >  >>
Рейтинг
Оцени!
Поделись конспектом: