Рейтинговое оценивание обучающихся на уроках математики

Страницы: <<  <  14 | 15 | 16 | 17 | 18  >  >>

ько одна.
Учащиеся записывают формулировку в тетради и, отвечая на вопросы преподавателя, делают соответствующие записи и рисунки в тетрадь.
- Что дано в теореме? (прямая и не лежащая на ней точка)
- Что надо доказать? (проходит плоскость; одна)
- Что можно использовать для доказательства? (аксиомы стереометрии)
- Какая из аксиом позволяет построить плоскость? (А1, через три точки проходит плоскость и притом только одна)
- Что есть в данной теореме и чего не хватает для использования А1 (имеем - точку; необходимы - еще две точки)
- Где построим еще две точки? (на данной прямой)
- Какой вывод можем сделать? ( через три точки строим плоскость)
- Принадлежит ли данной плоскости прямая? ( да)
- На основании чего можно сделать такой вывод? ( на основании А2: если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости)
- Сколько плоскостей можно провести через данные прямую и данную точку? (одну)
- Почему? (так как плоскость, проходящая через прямую и плоскость, проходит через данную точку и две точки на прямой, значит по А1 эта плоскость - единственная)
Слайд 16.
Теорема 2. Через две пересекающиеся прямые проходит плоскость и притом только одна.
Учащиеся доказывают теорему самостоятельно, затем прослушиваются несколько доказательств и делаются дополнения и уточнения (если они необходимы)
Обратить внимание на то, что доказательство опирается не на аксиомы, а на следствие 1.
Первичное закрепление изученного материала.

Слайд 17. Решить задачу 6 (один обучающийся работает у доски, остальные - в тетрадях)
Слайд 18,19. Задача на слайде. Учащиеся читают условие, делают рисунок и необходимые записи в тетрадях. Учитель проводит фронтальную работу с классом по вопросам задачи

Страницы: <<  <  14 | 15 | 16 | 17 | 18  >  >>
Рейтинг
Оцени!
Поделись конспектом: