Средняя линия треугольника

Страницы: <<  <  1 | 2 | 3 | 4  >  >>

е О, причём АО:ОС ВО:ОД. Докажите, что АВСД - трапеция.
(Док-во: Рассмотрим треугольники АОВ и ДОС. В них: АО:ОС ВО:ОД - по условию задачи, угол АОВ равен углу ДОС - как вертикальные. Значит, треугольник АОВ подобен треугольнику ДОС по двум пропорциональным сторонам и углу между ними. В подобных треугольникам соответственные углы равны, значит, угол АВО равен углу ВДС, а они накрест лежащие при прямых АВ и ДС и секущей ВД. Значит, отрезок АВ параллелен отрезку ДС.
Четырёхугольник, в котором две стороны параллельны, а две другие - нет, является трапецией. АВСД - трапеция).


2. (Слайд 3): Точка М - середина стороны АВ, а точка N - середина стороны ВС треугольника АВС. Докажите, что отрезок М N параллелен стороне АС.
(Док-во: Рассмотрим треугольники АВС и ВМN. В них: угол В - общий, ВМ:АВ ВN:ВС 1:2. Значит, треугольник АВС подобен треугольнику ВМN по двум пропорциональным сторонам и углу между ними. В подобных треугольникам соответственные углы равны, т. е. угол ВMN равен углу ВАС, а они соответственные при прямых МN и АС и секущей АВ, значит, отрезок МN параллелен отрезку АС. )
I. Изучение нового материала:
1. (слайд 4).
Учитель формулирует определение средней линии треугольника. Учащиеся выполняют соответствующие записи в тетради.
Вопрос к классу: Ребята, как вы думаете, а каким свойством обладает средняя линия треугольника?
Возможные ответы учащихся:
-разбивает треугольник АВС на два подобных треугольника;
-средняя линия параллельна противоположной стороне.
2. Учитель предлагает учащимся в парах обсудить доказательство параллельности
средней линии треугольника противоположной стороне. В это время учитель оказывает консультативную помощь.

Учитель: Ребята, а как вы думаете, чему р

Страницы: <<  <  1 | 2 | 3 | 4  >  >>
Рейтинг
Оцени!
Поделись конспектом: