Основы комбинаторики. Размещения, перестановки, сочетания

Страницы: <<  <  2 | 3 | 4 | 5 | 6  >  >>

- всемирно известным немецким учёным.
Комбинаторика является важным разделом математики, который исследует закономерности расположения, упорядочения, выбора и распределения элементов с фиксированного множества.
При большом числе возможных последствий испытания способы прямого перебора возможных вариантов малоэффективны. На помощь приходят комбинаторные методы, в основе которых лежат два следующих правила называемых соответственно правилами умножения и сложения.


ПРАВИЛО СУММИРОВАНИЯ
Если два взаимоисключающие действия могут быть выполнены в соответствии и способами, тогда какое-то одно из этих действий можно выполнить способами.
Пример 1
Из города А в город В можно добраться 12 поездами, 3 самолетами, 23 автобусами. Сколькими способами можно добраться из города А в город В?
Решение. Проезд из А в В на поезде, самолете или автобусе являются событиями, которые не могут выполняться одновременно одним человеком (взаимоисключающими), поэтому общее количество маршрутов можно вычислить суммированием способов передвижения
N12132338
Пример 2
В ящике имеется n разноцветных шариков. Произвольным образом вынимаем один шарик. Сколькими способами это можно сделать?
Решение. Конечно, n способами.
Теперь эти n шариков распределены по двум ящикам: В первом m шариков, во втором k. Произвольно из какого-нибудь ящика вынимаем один шарик. Сколькими разными способами это можно сделать?
Решение. Из первого ящика шарик можно вытянуть m различными способами, из второго k различными способами, всего N m k способами.
ПРАВИЛО ПРОИЗВЕДЕНИЯ
Пусть две выполняемые одно за другим действия могут быть осуществлены в соответствии и способами. Тогда обе они могут быть выполнены способами.
Пример 3
В тур

Страницы: <<  <  2 | 3 | 4 | 5 | 6  >  >>
Рейтинг
Оцени!
Поделись конспектом: