Основы комбинаторики. Размещения, перестановки, сочетания

Страницы: <<  <  3 | 4 | 5 | 6 | 7  >  >>

нире принимают участие 8 хоккейных команд. Сколько существует способов распределить первое, второе и третье места?
Решение. Первое место займет одна из 8 команд, второе - одна из 7, третье - одна из 6, так как каждая из них не может претендовать одновременно на два призовых места. Поэтому таких способов будет ровно
N876 336
Пример 4
Сколько можно записать двузначных чисел в десятичной системе счисления?
Решение. Поскольку число двузначное, то число десятков (m) может принимать одно из девяти значений: 1,2,3,4,5,6,7,8,9. Число единиц (k) может принимать те же значения и может, кроме того быть равным нулю. Отсюда следует, что m 9, а k 10. Всего получим двузначных чисел
N m k 910 90.
Пример 5
В студенческой группе 14 девушек и 6 юношей. Сколькими способами можно выбрать, для выполнения различных заданий, двух студентов одного пола?
Решение. По правилу умножения двух девушек можно выбрать 14 13 182 способами, а двух юношей 65 30 способами. Следует выбрать двух студентов одного пола: двух студентов или студенток. Согласно правилу сложения таких способов выбора будет N 182 30 212.
Типы соединений
Множества элементов называются соединениями.
Различают три типа соединений:
перестановки из n элементов;
размещения из n элементов по m;
сочетания из n элементов по m (m n).
Перестановки. Число перестановок
На практике часто возникают задачи, связанные с установлением порядка во множестве. Например, число мест равно количеству людей, на которых мы должны разместить их. Такая ситуация встречается часто - рассадить n человек на n мест, или приписать каждому человеку номер. Первый человек может выбрать любое из n мест, второй человек выбирает из (n - 1) оставшихся мест, третий человек може

Страницы: <<  <  3 | 4 | 5 | 6 | 7  >  >>
Рейтинг
Оцени!
Поделись конспектом: