Некоторые способы решения иррациональных уравнений

Страницы: <<  <  1 | 2 | 3 | 4  >  >>

ыводы;
воспитание самостоятельности, умения выслушивать других и умения общаться в группе;
повышение интереса к предмету.

Форма проведения: семинарское занятие.

Оборудование: компьютер, мультимедийный проектор.

Ход занятия:
Учитель:
Сегодня мы поговорим об иррациональных уравнениях.
На доске приведены примеры уравнений иррациональных и не являющихся иррациональными.

1)


Назовите те уравнения, которые являются иррациональными.
Дайте определения иррационального уравнения.
Ответы учеников. (иррациональными являются уравнения 1), 3), 4), 6). Определение иррационального уравнения:
Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. )
I. Учитель:
На предыдущих уроках мы рассматривали решение иррациональных уравнений методом возведения обеих частей уравнения в степень корня (в основном в квадрат). При возведении частей уравнения в чётную степень мы получаем уравнение-следствие, решение которого приводит иногда к появлению посторонних корней. И тогда обязательной частью решения уравнения является проверка корней или нахождение области определения уравнения.
Однако при решении иррациональных уравнений не всегда следует сразу приступать к "слепому" применению известного алгоритма решения.
В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. Поэтому необходимо знать и другие методы решения иррациональных уравнений, с некоторыми из них мы сегодня познакомимся.
При подготовке к уроку некоторые ученики получили листы-рекомендации, в

Страницы: <<  <  1 | 2 | 3 | 4  >  >>
Рейтинг
Оцени!
Поделись конспектом: