Сабақтың тақырыбы: Логарифмдік теңдеулерді шешу

Страницы: <<  <  1 | 2 | 3

жағын да x-ке бөліп, 36x-12 - көбейтейік. Сонда мына жүйеге келеміз: x1,xx-1236 xx-1236 теңдеуінен xx-16, xx-1!-6, өйткені, xx-11. xx-16, немесе (x)2-x-60 x3, x91; x-2, бұл мүмкін емес. Жауабы: х9 ІІІ. Кестедегі ережелер бойынша сабақты қорытындылау: 1-ші кесте:
logab1logba; a0, a!1, b0, b!1
Формуласын қолданғанда оң жағындағы өрнек пен сол жағындағы өрнектің анықталу облыстары бірдей болмағандықтан түбір жоғалуы мүмкін. 2-ші кесте:
Теңдеуді шешу барысында х негізі бойынша логорифмге көшсек, онда анықталу облысы тарылады да түбір жоғалуы мүмкін.
3-ші кесте:
Негізгі логорифмдік теңбе-теңдікті қолдану кезінде оның қолдану шарттарына мән берілмесе онда бөгде түбір шығуы мүмкін.
4-ші кесте
Көрсеткіштік логорифмдік теңдеудің екі жағын да логорифмдеу арқылы қарапайым теңдеуге келтіріп алып, шешеді.
Кері байланыс: Не білдім? Нені білгім келеді? Топтық жұмыс маған қаншалықты тиімді болды? (жазбаша түрінде)
ІV. Үйге тапсырма: 1. 274(1,3), 280(1,3), 279(2,4) 2. 17, Логорифм қасиеттерін, анықтамаларын түсініп қайтара оқу; 3. Үлмегендер деңгейлік тапсырмаларын аяқтау





Страницы: <<  <  1 | 2 | 3
Рейтинг
Оцени!
Поделись конспектом: