ь длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Название темы
Содержание учебного материала
Кол-во часов
1
Вводное повторение
3
2
Векторы
Определение вектора, начало, конец, нулевой вектор, длина вектора, коллинеарные, сонаправленные, противоположно направленные, равные векторы. обозначение и изображение векторов. Откладывание вектора от данной точки.
Сложение и вычитание векторов. Законы сложения, определение суммы, правило треугольника, правило параллелограмма. Построение вектора, равного сумме двух векторов, используя правила треугольника, параллелограмма, многоугольника. Понятие разности двух векторов, противоположных векторов.
Определение умножения вектора на число, свойства. Применение векторов к решению задач, теоремы о средней линии трапеции и алгоритм решения задач с применением этой теоремы.
8
3
Метод координат.
Лемма о коллинеарных векторах. Теорема о разложении вектора по двум данным неколлинеарным векторам. Понятие координат вектора, координат суммы и разности векторов, произведения вектора на число. Формулы координат вектора через координаты его конца и начала, координат середины отрезка, длины вектора и расстояния между двумя точками. Уравнение окружности и прямой. Изображение окружности и прямой, заданных уравнениями, простейшие задачи в координатах.
10
4
Соотношение между сторонами и углами треугольника. Скалярное
Страницы: << < 5 | 6 | 7 | 8 | 9 > >>