Факультативный курс. ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К ОЛИМПИАДАМ ПО МАТЕМАТИКЕ УЧАЩИХСЯ 5-6 КЛАССОВ

Страницы: <<  <  4 | 5 | 6 | 7 | 8  >  >>

см село 25 мух. Докажите, что квадратной мухобойкой 11 см 11 см можно прихлопнуть сразу трех мух.
Решение.
Разделим окно на 12 квадратов размером 10 см 10 см. Если в каждом квадрате не более двух мух, то всего на окне не более 2 12 24 мух, а по условию мух 25, значит, в каком - то квадрате сидит хотя бы 3 мухи. Мухобойка закроет этот квадрат. Значит, такой мухобойкой можно прихлопнуть сразу трех мух.
Задача 16
В коробке лежат карандаши: 4 красных и 3 синих. В темноте берут карандаши. Сколько надо взять карандашей, чтобы среди них было не менее одного синего?
Ответ: 5 карандашей.
Задача 17
У мальчика 9 медных монет. Докажите, что у него есть хотя бы три монеты одинакового достоинства.
Решение.
Всего различных медных монет 4. Пусть мальчик имеет набор по 2 монеты каждого вида, всего будет 8 монет. Оставшаяся монета из 9 имеющихся, будет третьей монетой одного из видов. Значит, у мальчика есть хотя бы 3 монеты одинакового достоинства.
Задача 18
Какое наименьшее количество любых натуральных чисел следует взять, чтобы среди них всегда нашлась такая пара чисел, разность которых делилась бы на 5?
Решение.
Разобьем множество натуральных чисел на 5 классов: к первому классу отнесем все числа, которые при делении на 5 дают остаток, равный 0, ко второму классу – остаток, равный 1, к третьему классу - остаток, равный 2, к четвертому классу – остаток, равный 3, к пятому – остаток, равный 4. Очевидно, что разность двух чисел, принадлежащих разным классам, на 5 не делится. Если же взять шесть чисел, то среди них обязательно найдутся два числа, принадлежащие одному и тому же классу, и разность этих чисел делится на 5.
Итак, наименьшее количество натуральных чисел, которое следует взять, равно 6.
Задача 19
В к

Страницы: <<  <  4 | 5 | 6 | 7 | 8  >  >>
Рейтинг
Оцени!
Поделись конспектом: