аново открыто лишь в XIV веке немецким математиком, астрономом Регимонтаном.
Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) - творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.
Начиная с XVII в. , тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.
Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе - наука об измерении углов, от греческого gwnia - угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.
Итак повторим как определяется угол между прямой и плоскостью.
Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярную к ней, называют угол между прямой и её проекцией на плоскость .
При решении задач углом между прямой и плоскостью будет служить угол между наклонной и её проекцией. Наибольшее затруднение при построении такого угла вызывает построение перпендикуляра от точки до плоскости. Считают также, что прямая, перпендикулярная плоскости, образует с этой плоскостью прямой угол.
Задача 6. В кубе A. . . D1 найдите угол между прямой AA1 и плоскостью ABC.
Решение: Ребро АА1 перпендикулярно
Страницы: << < 2 | 3 | 4 | 5 > >>