Сравнение дробей с разными знаменателями

Страницы: <<  <  1 | 2 | 3

учение нового материала
Рассмотрите дроби 34; 23;56; 712; 12
- Что вы заметили? Можно ли назвать самую большую и самую маленькую дробь?
Возникает проблема как это сделать, поэтому в хоте исследовательской работы мы с вами научимся сравнивать дроби с разными знаменателями.
- Постройте координатный луч, выберите единичный отрезок равный 12 клеток тетради.
-Расположите дроби на координатном луче. (Работа идёт под чётким контролем учителя)
- Сравните полученные отрезки и сделайте вывод.
- Расположите дроби в порядке возрастания. Попробуйте сформулировать вывод, как сравнить дроби с разными знаменателями?
Откройте учебник на стр. 49 и прочитайте правило относительно действия сравнения.
- А теперь рассмотрим, как это сделать более быстрым способом.
Сравнить дроби 23 и 35
-Приведём дроби к наименьшему общему знаменателю (коротко НОЗ)
НОЗ(23 и 35)15
232 5351015 353 353915 1015915 значит, 2335
VII Усвоение новых знаний и способов действий
304 (парная работа) - Как сравнить дроби с разными знаменателями?
305, 306 - самостоятельно с взаимопроверкой
313 - Что нужно сделать, чтобы ответить н вопрос задачи? (сравнить дроби)
- Как сравнить дроби с одинаковыми знаменателями?
-Как сравнить дроби с разными знаменателями?
VIII Рефлексия учебной деятельности и оценивание работы учащихся на уроке
- Как сравнить дроби с одинаковыми знаменателями?
- Как сравнить дроби с одинаковыми знаменателями?
- Как сравнить дроби с разными знаменателями?
- Достигли ли вы цели, которую ставили в начале уроке?
IX Домашнее задание
П. 11 правило, 359(а-е), 373(а)









Страницы: <<  <  1 | 2 | 3
Рейтинг
Оцени!
Поделись конспектом: