Решение квадратных уравнений

Страницы: <<  <  1 | 2 | 3 | 4  >  >>

х соревнований говорится следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Ò
Ô
ð

$
T
Ô

$
T
愁Ĥ摧ä
FfF
葠ƪ摧äᜀВот одна из задач знаменитого индийского математика XII в. Бхаскары:
Обезьянок резвых стая
Всласть поевши, развлекалась.
Их в квадрате часть восьмая,
Нна поляне забавлялась.
А двенадцать по лианам. . .
Стали прыгать, повисая. . .
Сколько ж было обезьянок,
Ты скажи мне, в этой стае?
а) Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.
Решение задачи Бхаскары:
(Решается учащимися в классе с помощью формул корней квадратного уравнения)
.
12 х
Х148; Х216
б) Затем учащимся предлагается решить самостоятельно еще одну задачу Бхаскары. Решают квадратное уравнение по теореме, обратной теореме Виета.
Решение задачи Бхаскары:
Сколько обезьян в стае, если квадрат пятой части, уменьшенной тремя, спрятался в пещере, и только одна осталась на виду, взобравшись на дерево?
Решение: задача сводиться к решению квадратного уравнения


есть число отрицательное, то годится только первое решение».
Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2 bх с, при всевозможных комбинациях знаков коэффициентов b и с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Практическая часть урока.
В школьном курсе математики подробно изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения, способ выделения квадрата двучлена, способ использов

Страницы: <<  <  1 | 2 | 3 | 4  >  >>
Рейтинг
Оцени!
Поделись конспектом: