ь учащихся со свойствами числовых неравенств и их применением к решению задач (сравнение и оценка значений выражений, доказательство неравенств и др. ); выработать умение решать линейные неравенства с одной переменной и их системы.
Изучение темы начинается с обобщения и систематизации знаний о действительных числах, повторения известных учащимся терминов: натуральные, целые, рациональные, действительные числа -- и рассмотрения отношений между соответствующими числовыми множествами. Свойства числовых неравенств иллюстрируются геометрически и подтверждаются числовыми примерами. Рассмотрение вопроса о решении линейных неравенств с одной переменной сопровождается введением понятий равносильных уравнений и неравенств, формулируются свойства равносильности уравнений и неравенств. Приобретенные учащимися умения получают развитие при решении систем линейных неравенств с одной переменной. Рассматривается также вопрос о доказательстве неравенств. Учащиеся знакомятся с некоторыми приемами доказательства неравенств; система упражнений содержит значительное число заданий на применение аппарата неравенств.
2. Квадратичная функция. Функция у ах2 bх с и ее график. Свойства квадратичной функции: возрастание и убывание, сохранение знака на промежутке, наибольшее (наименьшее) значение. Решение неравенств второй степени с одной переменной.
О с н о в н а я ц е л ь -- познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами; научить строить график квадратичной функции и читать по графику ее свойств сформировать умение использовать графические представлен для решения квадратных неравенств.
Особенность принятого подхода заключается в том, что изучение темы начинается с общего знакомства с фун
Страницы: << < 5 | 6 | 7 | 8 | 9 > >>