ыполнении заданий на сокращение дробей, числители и знаменатели которых – произведения, содержащие степени.
В этой же теме продолжается обучение решению комбинаторных задач, в частности задач, решаемых на основе комбинаторного правила умножения. Дается специальное название одному из видов комбинаций – перестановки и рассматривается формула для вычисления числа перестановок. Это первая комбинаторная формула, сообщаемая учащимся.
7. Многочлены
p
t
z
À
Â
Æ
ê
ð
8
l
n
p
r
t
瑹硸&
愀摧硸&t
v
x
z
Â
ð
9 Одночлены и многочлены. Сложение, вычитание и умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности.
Основная цель –выработать умения выполнять действия с многочленами, применять формулы квадрата суммы и квадрата разности, куба суммы и куба разности для преобразования квадрата и куба двучлена в многочлен.
Изучение данной темы опирается на знания, полученные при изучения темы «Введение в алгебру». Используются свойства алгебраических сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Терминами «одночлен» и «многочлен» называются такие алгебраические выражения, с которыми учащиеся, по сути, уже имели дело.
Основное внимание в данной теме уделяется рассмотрению алгоритмов выполнения действий над многочленами – сложения, вычитания, умножения, при этом подчеркивается следующий теоретический факт: сумму, разность и произведение многочленов всегда можно представить в виде многочлена. В ходе практической деятельности учащиеся должны выполнять задания комплексного характера, предусматривающие выполнение нескольких действий. Одн
Страницы: << < 5 | 6 | 7 | 8 | 9 > >>