ой и описанной окружностей; познакомить учащихся с такими интересными объектами, как окружность и прямая Эйлера, с теоремами Менелая и Чевы, и , наконец, дать геометрические определения эллипса, гиперболы и параболы и вывести их канонические уравнения.
Тригонометрические функции числового аргумента (9 часов)
Функции у sinх;, у cosx, у tgx, у ctgx.
Цель: изучить свойства основных тригонометрических функций и их графиков. Сначала говорится о том, что хотя функция может выражать зависимость между разными физическими величинами, но в математике принято рассматривать функции у f(x) как функции числа. Поэтому здесь и рассматриваются тригонометрические функции числового аргумента, их основные свойства. С использованием свойств тригонометрических функций строятся их графики. При изучении этой темы вводится понятие периодической функции и ее главного периода, доказывается, что главный период функций у sinx и у cosx есть число 2π, а главный период функций у tgx и у ctgx есть число π.
Тригонометрические уравнения и неравенства (12 часов)
Простейшие тригонометрические уравнения. Тригонометрические уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрических формул для решения уравнений. Однородные уравнения. Простейшие тригонометрические неравенства. Неравенства, сводящиеся к простейшим заменой неизвестного. Введение вспомогательного угла. Замена неизвестного t sinх cosх;.
Цель: сформировать умение решать тригонометрические уравнения и неравенства. Сначала с опорой на умение решать задачи на нахождение всех углов х таких, что f(x) а, где f(x) — одна из основных тригонометрических функций (sinx, cosx, tgx, ctgx), рассматривается решение простейших тригонометрических уравнений. Затем рассматриваются уравнения
Страницы: << < 13 | 14 | 15 | 16 | 17 > >>