а и арккотангенса числа и с их помощью решаются задачи на нахождение всех углов, для каждого из которых tga (или ctga) равен (больше или меньше) некоторого числа. Выводятся формулы для арктангенса и арккотангенса.
Формулы сложения (11 часов)
J
x
J
x
"
摧Æ&䘋摧Æ&䘋
摧ⸯᰀКосинус суммы (и разности) двух углов. Формулы для дополнительных углов. Синус суммы (и разности) двух углов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов. Произведение синусов и косинусов. Формулы для тангенсов.
Цель: освоить формулы косинуса и синуса суммы и разности двух углов, выработать умение выполнять тождественные преобразования тригонометрических выражений с использованием выведенных формул. Сначала с помощью скалярного произведения векторов доказывается формула косинуса разности двух углов. Затем с помощью свойств синуса и косинуса угла и доказанной формулы выводятся все перечисленные формулы. Используя доказанные формулы, выводятся формулы для синусов и косинусов двойных и половинных углов, а также для произведения синусов и косинусов углов. Наконец, выводятся формулы для тангенса суммы (разности) двух углов тангенса двойного и половинного углов, для выражения синуса, косинуса и тангенса угла через тангенс половинного угла.
Некоторые сведения из планиметрии (12 часов)
Углы и отрезки, связанные с окружностью. Решение треугольников. Теорема Менелая и Чевы. Эллипс, гипербола и парабола.
Цель: расширить известные учащимся сведения о геометрических фигурах на плоскости: рассмотреть ряд теорем об углах и отрезках, связанных с окружностью, о вписанных и описанных четырехугольниках; вывести формулы для медианы и биссектрисы треугольника, а также формулы площади для треугольника, использующие радиусы вписанн
Страницы: << < 12 | 13 | 14 | 15 | 16 > >>