Рабочая программа по математике 10 класс

Страницы: <<  <  11 | 12 | 13 | 14 | 15  >  >>

е знакомы. Теперь эти представления расширяются. Многогранник определяется как поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело (его тоже называют многогранником). В связи с этим уточняется само понятие геометрического тела, для чего вводится еще ряд новых понятий (граничная точка фигуры, внутренняя точка и т. д. ).
Синус и косинус угла (7 часов)
Понятие угла и его меры. Определение синуса и косинуса угла, основные формулы для них. Арксинус и арккосинус. Примеры использования арксинуса и арккосинуса и формулы для них.
Цель: освоить понятия синуса и косинуса произвольного угла, изучить свойства функций угла:
sin а и cos а. Используя язык механики, вводится понятие угла как результата поворота вектора. Затем вводятся его градусная и радианная меры. С использованием единичной окружности вводятся понятия синуса и косинуса угла. Изучаются свойства функций sin а и cos а как функций угла а, доказываются основные формулы для них. Вводятся понятия арксинуса и арккосинуса числа и с их помощью решаются задачи на нахождение всех углов, для каждого из которых sin а (или cos а) равен (больше или меньше) некоторого числа. Выводятся формулы для арксинуса и арккосинуса.
Тангенс и котангенс угла (6 часов)
Определения тангенса и котангенса угла и основные формулы для них. Арктангенс и арккотангенс. Примеры использования арктангенса и арккотангенса и формулы для них.
Цель: освоить понятия тангенса и котангенса произвольного угла, изучить свойства функций угла: tga и ctga. Тангенс и котангенс угла а определяются как с помощью отношений sin a и cos a, так и с помощью осей тангенса и котангенса. Изучаются свойства функций tga и ctga как функций угла а, доказываются основные формулы для них. Вводятся понятия арктангенс

Страницы: <<  <  11 | 12 | 13 | 14 | 15  >  >>
Рейтинг
Оцени!
Поделись конспектом: