нений, графический способ решения уравнений; решать текстовые задачи, сводящиеся к решению квадратных уравнений;
Находить значение функции по заданному значению аргумента;
решать линейные неравенства с одной переменной, используя понятие числового промежутка и свойства числовых неравенств, системы линейных неравенств, задачи, сводящиеся к ним;
понимать графическую интерпретацию решения уравнений и систем уравнений, неравенств;
находить значение аргумента по заданному значению функции в несложных ситуациях;
определять положение точки по её координатам, координаты точки по её положению на координатной плоскости
строить график линейной функции;
проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
определять приближённые значения координат точки пересечения графиков функций;
;
работать в информационном поле (таблицы, схемы, диаграммы, графики, последовательности, цепочки, совокупности): представлять, анализировать и интерпретировать данные.
СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА
Неравенства (31 ч)
Неравенства первой степени с одним неизвестным. Линейные неравенства с одним неизвестным. Системы линейных неравенств с одним неизвестным. Неравенства второй степени с одним неизвестным. Неравенства, сводящиеся к неравенствам второй степени. Метод интервалов. Решение рациональных неравенств. Системы рациональных неравенств. Нестрогие рациональные неравенства
f
h
Â
D
F
ª
Â
B
D
F
ª
Â
рациональные неравенства и их системы, нестрогие неравенства.
2. Степень числа (15 ч)
0).
0) и их графики, свойства корня n-ой степени; выработать умение преобразовывать выражения, содержащие корни n-ой степени.
Страницы: << < 1 | 2 | 3 | 4 | 5 > >>