аминарным движением у стенок, хотя слой δ с ламинарным режимом весьма мал по сравнению с турбулентным ядром.
Рис. 4. 6. Модель турбулентного режима движения жидкости
Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является уже приводившаяся выше эмпирическая формула, называемая формулой Вейсбаха-Дарси и имеющая следующий вид:
Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора - относительной шероховатости Δ/d (или Δ/r0, где r0 - радиус трубы).
Впервые наиболее исчерпывающей работы по определению были даны И. И. Никурадзе, который на основе опытных данных построил график зависимости lg(1000λ) от lg Re для ряда значений Δ/r 0. Опыты Никурадзе были проведены на трубах с искусственно заданной шероховатостью, полученной путем приклейки песчинок определенного размера на внутренние стенки трубопровода. Результаты этих исследований представлены на рис. 4. 7, где построены кривые зависимости lg (1000λ) от lg Re для ряда значений Δ/r0.
Прямая I соответствует ламинарному режиму движения жидкости.
Далее на графике можно рассматривать три области.
Первая область - область малых Re и Δ/r0, где коэффициент λ не зависит от шероховатости, а определяется лишь числом Re (отмечена на рис. 4. 7 прямой II ). Это область гидравлически гладких труб. Если число Рейнольдса лежит в диапазоне 4000 Re 10(d / Δ э) коэффициент λ определяется по полуэмпирической формуле Блазиуса
Для определения существует также эмпирическая формула П. К. Конакова, которая применима для гидравлически гладких труб
Рис. 4. 7. График Никурадзе
Во второй области, расположенной меж
Страницы: << < 37 | 38 | 39 | 40 | 41 > >>