μ заменить через кинематический коэффициент вязкости υ и плотность ρ ( μ υ ρ ) и разделить обе части равенства на объемный вес жидкости γ ρ g, то получим:
Так как левая часть полученного равенства равна потерям напора hпот в трубе постоянного диаметра, то окончательно это равенство примет вид:
Уравнение может быть преобразовано в универсальную формулу Вейсбаха-Дарси, которая окончательно записывается так:
где λ - коэффициент гидравлического трения, который для ламинарного потока вычисляется по выражению:
Однако при ламинарном режиме для определения коэффициента гидравлического трения λ Т. М. Башта рекомендует при Re 2300 применять формулу
4. 4. Потери напора при турбулентном течении жидкости
Как было указано в п. 4. 1, для турбулентного течения характерно перемешивание жидкости, пульсации скоростей и давлений. Если с помощью особо чувствительного прибора-самописца измерять пульсации, например, скорости по времени в фиксированной точке потока, то получим картину, подобную показанной на рис. 4. 4. Скорость беспорядочно колеблется около некоторого осредненного по времени значения υ оср, которое данном случае остается постоянным.
Характер линий тока в трубе в данный момент времени отличается большим разнообразием (рис. 4. 5).
Рис. 4. 4. Пульсация скорости в турбулентном потоке. Рис. 4. 5. Характер линий тока в турбулентном потоке
При турбулентном режиме движения жидкости в трубах эпюра распределения скоростей имеет вид, показанный на рис. 4. 6. В тонком пристенном слое толщиной δ жидкость течет в ламинарном режиме, а остальные слои текут в турбулентном режиме, и называются турбулентным ядром. Таким образом, строго говоря, турбулентного движения в чистом виде не существует. Оно сопровождается л
Страницы: << < 36 | 37 | 38 | 39 | 40 > >>