Факультатив Квадратная функция и ее применение

Страницы: <<  <  1 | 2 | 3 | 4  >  >>

ием и положением эскиза графика функции на координатной плоскости. С одной стороны, от учащихся требуется свободное владение свойствами квадратичной функции и умение построить соответствующую графическую интерпретацию, с другой - геометрическая интерпретация помогает проверить логическую правильность и непротиворечивость теоретических рассуждений. Задачи на расположение корней квадратичной функции и сводящиеся – она из самых популярных тем в задачах с параметрами. Задачи с параметрами на квадратичную функцию и задачи, сводящиеся к квадратичным функциям, очень популярны на выпускных и вступительных экзаменах, ЕНТ, школьных олимпиадах разного уровня.
Будучи основной в школьном курсе математики, квадратичная функция формирует обширный класс задач , разнообразных по форме и содержанию, но объединённых одной идеей – в основе их решения лежат свойства функции y ax2 bx c.
Цели курса:
восполнить некоторые содержательные пробелы основного курса, придающие ему необходимую целостность;
продолжить формирование у учащихся представлений о следующих понятиях: область определения, область значения, наибольшее и наименьшее значения квадратичной функции;
выработать умение исследование и чтения графиков, применения графика к решению задач с модулями, параметрами;
показать некоторые нестандартные приемы решения задач на основе свойств квадратичной функции;
формировать качество мышления, характерные для математической деятельности и необходимые человеку в жизни в современном обществе.
Задачи курса:
научить учащихся решать задачи более высокой, по сравнению с обязательным уровнем, сложности;
овладеть рядом технических и интеллектуальных математических умений;
приобрести определенную математическую культуру;
помочь ученику оценить с

Страницы: <<  <  1 | 2 | 3 | 4  >  >>
Рейтинг
Оцени!
Поделись конспектом: