лирования — определение минимальной размерности пространства, то задача построения пространственной модели сразу становится нетривиальной. Это наглядно иллюстрируется теоремой Гуттмана, которая гласит, что элементы действительной симметричной матрицы порядка n могут быть строго монотонны с расстояниями между n точками в действительном евклидовом пространстве размерностью не более чем (n-2), только в том случае, если элементы матрицы не равны нулю и не совпадают друг с другом.
Иначе говоря, возможность уменьшения размерности при условии сохранения монотонности связана с дополнительными ограничениями, которым должно удовлетворять искомое решение. Последнее, в свою очередь, означает, что исходные данные должны обладать значительной избыточностью, по сравнению с искомым решением. В каком случае это возможно? Конфигурация точек в пространстве определяется nхr степенями свободы (где n — число точек-стимулов, r — размерность пространства). Исходная матрица различий имеет c2 степеней свободы. Следовательно, избыточность исходных данных будет зависеть от того, насколько число стимулов n больше, чем размерность r. Чем больше число стимулов по сравнению с размерностью, тем больше избыточность исходной матрицы и тем более определенной оказывается пространственная и метрическая структура данных, вплоть до нахождения единственного решения, если, конечно, такое решение возможно в принципе. Шепард (1966) показал, что при размерности 2 или 3 для метрического решения практически достаточно 10—15 точек-стимулов.
Таким образом, два неметрических условия, на которые ориентируется решение — монотонности и минимальной размерности — могут дать полную метрическую информацию об исходных данных Гусеч, с. 250.
Следует отметить, что для многомерного шкалирования существенным является
Страницы: << < 25 | 26 | 27 | 28 | 29 > >>