Шифросистемы с открытым ключом. Их возможности и применение

Страницы: <<  <  3 | 4 | 5 | 6 | 7  >  >>

rivate) ключом.
Если бы существовали эффективные методы разложения на сомножители (факторинга), то, разложив n на сомножители (факторы) p и q, можно было бы получить частный (private) ключ d. Таким образом надежность криптосистемы RSA основана на трудноразрешимой – практически неразрешимой – задаче разложения n на сомножители (то есть на невозможности факторинга n) так как в настоящее время эффективного способа поиска сомножителей не существует.
Ниже описывается использование системы RSA для шифрования информации и создания цифровых подписей (практическое применение немного отличается).
2. Шифрование
(mod n), где e и n – открытый (public) ключ Боба. Затем Алиса посылает С (зашифрованный текст) Бобу. Чтобы расшифровать полученный текст, Боб возводит полученный зашифрованный текст C в степень d и умножает на модуль n: M cd(mod n); зависимость между e и d гарантирует, что Боб вычислит M верно. Так как только Боб знает d, то только он имеет возможность расшифровать полученное сообщение.
3. Цифровая подпись
(mod n), где d и n – частный ключ Алисы. Она посылает M и S Бобу.
(mod n), где e и n – открытый (public) ключ Алисы.
Таким образом шифрование и установление подлинности автора сообщения осуществляется без передачи секретных (private) ключей: оба корреспондента используют только открытый (public) ключ своего корреспондента или собственный закрытый ключ. Послать зашифрованное сообщение и проверить подписанное сообщение может любой, но расшифровать или подписать сообщение может только владелец соответствующего частного (private) ключа.
4. Скорость работы алгоритма RSA
Как при шифровании и расшифровке, так и при создании и проверке подписи алгоритм RSA по существу состоит из возведения в степень, которое выполняется как ряд у

Страницы: <<  <  3 | 4 | 5 | 6 | 7  >  >>
Рейтинг
Оцени!
Поделись конспектом: