Рабочая программа по математике 10-11 класс по ФГОС

Страницы: <<  <  18 | 19 | 20 | 21 | 22  >  >>

еделом последовательности с помощью определения предела. На данном этапе элементы теории пределов не изучаются.
Арифметический корень натуральной степени п 2 из неотрицательного числа и его свойства излагаются традиционно. Учащиеся должны уметь вычислять значения корня с помощью определения и свойств и выполнять преобразования выражений, содержащих корни.
Степень с иррациональным показателем поясняется на конкретном примере: число рассматривается как последовательность рациональных приближений З1,4, З1,41, . . . . Здесь же формулируются и доказываются свойства степени с действительным показателем, которые будут использоваться при решении уравнений, неравенств, исследовании функций.
Степенная функция (16 часов)
Степенная функция, ее свойства и график. Взаимно обратные функции. Сложные функции. Дробно-линейная функция. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.
Основная цель — обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций и научить применять их при решении уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.
Рассмотрение свойств степенных функций и их графиков проводится поэтапно, в зависимости от того, каким числом является показатель: 1) четным натуральным числом; 2) нечетным натуральным числом; 3) числом, противоположным четному натуральному числу; 4) числом, противоположным нечетному натуральному числу; 5) положительным нецелым числом; 6) отрицательным нецелым числом.
Обоснования свойств степенной функции не проводятся, они следуют из свойств степени с действительным показателем. Например, возрастание функции у хрна промежутке х О, где р— положитель

Страницы: <<  <  18 | 19 | 20 | 21 | 22  >  >>
Рейтинг
Оцени!
Поделись конспектом: