Рабочая программа по математике 10-11 класс по ФГОС

Страницы: <<  <  15 | 16 | 17 | 18 | 19  >  >>

в теории чисел считаются менее сложными, чем задачи, возникающие при сложении и умножении натуральных чисел. К таким задачам, например, относится теорема Ферма о представлении n-й степени числа в виде суммы гс-х степеней двух других чисел.
Рассказывая учащимся о проблемах теории чисел, желательно сообщить, что решению уравнений в целых и рациональных числах (так называемых диофантовых уравнений) посвящен большой раздел теории чисел. Здесь же рассматривается теорема о целочисленных решениях уравнения первой степени с двумя неизвестными и приводятся примеры решения в целых числах уравнения второй степени.
Многочлены. Алгебраические уравнения(17 ч)
Многочлены от одного переменного. Схема Горнера. Многочлен Р (х) и его корень. Теорема Везу. Следствия из теоремы Везу. Алгебраические уравнения. Делимость двучленов хт ат на х а. Симметрические многочлены.
Многочлены от нескольких переменных. Формулы сокращенного умножения для старших степеней. Бином Ньютона. Системы уравнений.
Основная цель — обобщить и систематизировать знания о многочленах, известные из основной школы; научить выполнять деление многочленов, возведение двучленов в натуральную степень, решать алгебраические уравнения, имеющие целые корни, решать системы уравнений, содержащие уравнения степени выше второй; ознакомить с решением уравнений, имеющих рациональные корни.
Продолжается изучение многочленов, алгебраических уравнений и их систем, которые рассматривались в школьном курсе алгебры. От рассмотрения линейных и квадратных уравнений учащиеся переходят к алгебраическим уравнениям общего вида Рп(х) О, где Рп(х) — многочлен степени п. В связи с этим вводятся понятия степени многочлена и его корня.
Отыскание корней многочлена осуществляется разложением его на множители. Для это

Страницы: <<  <  15 | 16 | 17 | 18 | 19  >  >>
Рейтинг
Оцени!
Поделись конспектом: