Методическая разработка по дисциплине Статистика

Страницы: <<  <  4 | 5 | 6 | 7 | 8  >  >>

елей динамики (темпов роста), построенных на основе отношения каждого уровня в ряду динамики к предыдущему уровню.

3. Средняя гармоническая
Простая:

Средняя гармоническая
Взвешенная:

;

Средняя квадратическая величина применяется при определении показателей вариации и рассчитывается как корень квадратный из средней арифметической.

4. Средняя квадратическая
Простая:



Взвешенная:


Структурные средние

Структурные средние являются особым видом средних величин, их значение имеет какой-либо определенный средний вариант в вариационном ряду. Структурные средние применяются для изучения структуры распределения значений признака и являются в отличие от степенных средних конкретными характеристиками. К этому виду средних относятся мода и медиана.
1. Мода (M0) - значение признака (вариант), встречающееся с наибольшей вероятностью в совокупности или в вариационном ряду. Другими словами, мода - это вариант, который чаще всего встречается в конкретной совокупности.
Мода в интервальных рядах распределения с равными интервалами определяется по следующей формуле:


Мо Xмоiмоfмо-fмо-1(fмо-fмо-1 )(fмо-fмо1 )


где МО модальное (наиболее часто встречающееся) значение признака;
Xмо нижняя граница модального интервала;
iмо величина модального интервала;
fмо частота модального интервала;
fмо-1 частота интервала, предшествующего модальному;
fмо1 частота интервала, следующего за модальным.

2. Медиана (Me) - вариант, который находится в середине ранжированного (упорядоченного) ряда, расположенного в определенном порядке - по возрастанию или по убыванию вариантов. Медиана делит вариационный ряд на две равные част

Страницы: <<  <  4 | 5 | 6 | 7 | 8  >  >>
Рейтинг
Оцени!
Поделись конспектом: