множества поддержки. Можно доказать, что если S - невыполнимый набор дизъюнктов, а S-T - выполнимый, то стратегия множестваподдержки является полной в смысле опровержения. С другими стратегиями для поиска методом резолюции в больших пространствах дизъюнктивных выражений читатель может познакомиться в специальной литературе 1. 1 , 3. 1 , 3. 2 .
Исследования, связанные с доказательством теорем и разработкой алгоритмов опровержения резолюции, привели к развитию языка логического программирования PROLOG (Programming in Logic). PROLOG основан на теории предикатов первого порядка. Логическаяпрограмма - это набор спецификаций в рамках формальной логики. Несмотря на то, что в настоящее время удельный вес языков LISP иPROLOG снизился и при решении задач ИИ все больше используются C, C и Java, однако многие задачи и разработка новых методов решения задач ИИ продолжают опираться на языки LISP и PROLOG. Рассмотрим одну из таких задач - задачу планирования последовательности действий и ее решение на основе теории предикатов.
Задачи планирования последовательности действий
Многие результаты в области ИИ достигнуты при решении " задач для робота ". Одной из таких простых в постановке и интуитивно понятных задач является задача планирования последовательности действий, или задача построения планов.
В наших рассуждениях будут использованы примеры традиционной робототехники (современная робототехника во многом основывается на реактивном управлении, а не на планировании). Пункты плана определяют атомарные действия для робота. Однако при описании плана нет необходимости опускаться до микроуровня и говорить о датчиках, шаговых двигателях и т. п. Рассмотрим ряд предикатов, необходимых для работы планировщика из мира блоков. Имеется некоторый робот, являющий
Страницы: << < 11 | 12 | 13 | 14 | 15 > >>