Осы заңдылыққа сәйкес төртінші қатардағы сұрау белгісінің орнына төмендегі жауаптардың қайсысы сәйкес келеді?
1. 5,5,50,500
2. 3,6,18,108
3. 4,8,32,256
4. 1,? ,? , ?, (1,2,2,4)
Тақырыптың алдын ала даярлық тапсырмасында у-х5 және ух-1 теңдеулерінің графиктері салынып, олардың екеуіне де ортақ нүкте көрсетілген. Теңдеулердің екеуінің де графиктерінің қиылысу нүктесінің координаталары сол екі теңдеуге де ортақ шешім болады. Сонымен қатар, көрсетілген тәсілмен шешімдері ортақ екі айнымалысы бар сызықтық теңдеулердің шешімдерін тауып үйрену тапсырылған.
Екі айнымалысы бар сызықтық теңдеулер жүйесіндегі теңдеулердің графиктері үш түрлі жағдайда орналасады. Осыған байланысты екі айнымалысы бар сызықтық теңдеулер жүйесінің:
1. бір ғана шешімі бар,
2. шешімдері жоқ
3. сансыз көп шешімдері бар.
Екі айнымалысы бар сызықтық теңдеулер жүйесіндегі теңдеулердің әрқайсысын тура теңдікке айналдыратын айнымалылардың мәндерінің жұбын сол теңдеулер жүйесінің шешімі деп атайды.
Теңдеулер жүйесін шешу дегеніміз-оның барлық шешімдерін табу немесе оның шешімдерінің болмайтынын дәлелдеу.
Екі айнымалысы бар сызықтық теңдеулер жүйесін шешудің графиктік, алмастыру, қосу тәсілдері бар.
Екі айнымалысы бар сызықтық теңдеулер жүйесін графиктік тәсілмен шешуді қарастырып отырмыз.
1 жағдай.
у0,5х2
у-1,5х6 жауабы (2; 3)
егер теңдеулер жүйесіндегі теңдеулердің графиктері болатын түзулер қиылысса, онда теңдеулер жүйесінің бір ғана шешімі болады.
ІІ жағдай.
Теңдеулер жүйесіндегі теңдеулердің графиктері болатын түзулер өзара параллель
у-0,5х2
у-0,5х-3
жауабы: шешімдері болмайды, Ø
егер теңдеулер жүйесіндегі теңдеулердің графиктері болатын түзулер өзара
Страницы: << < 18 | 19 | 20 | 21 | 22 > >>