Математикалық және серіппелі маятниктердің тербелістері

Страницы: <<  <  2 | 3 | 4 | 5  >  >>

мен қозғалатындай етіп, оны конус сызуға мәжбүр етеміз.
Маятниктің айналу периоды оның тербеліс периодына тең болады. Тайн. ТтерТ.
Конустық маятниктің айналу периоды жүк сызатын шеңбердің ұзындығын сызықтық жылдамдыққа бөлгенге тең:


Ал маятник вертикаль күйінен шамалы ғана ауытқитын болса, амплитуда аз болғанда, қорытқы күш шеңбердің ВС радиусы бойымен бағытталады деп есептеуге болады. Бұл жағдайда қорытқы күш центрге тартқыш күшке тең:

ОВС және ВDE үшбұрыштарының ұқсастығынан:ВЕ:ВD СВ:ОС немесе Ғ:mg R:l, бұдан

Ғ күшінің осы екі өрнегін теңестіре отырып алатынымыз:



немесе


Осыны Т периодтың өрнегіне қойып, мынаны аламыз:


болғандықтан, математикалық маятниктің жиілігін мына өрнек арқылы шығара аламыз:

Математикалық маятниктің жібінің ұзындығы мына өрнек арқылы есептеледі:


Енді серіппеге ілінген жүктің тербелісін қарастырайық. Мұндай қарапайым тербелмелі жүйені серіппелі маятник деп атайды. Егер серіппе l ұзындыққа созылса немесе сығылса, онда денені тепе-теңдік күйіне қайтаратын Ғ күші туындайды. Ұзару шамасы азғантай болған кезде бұл күш серіппенің ұзаруына пропорционал болады, яғни Гук заңы бойынша:

Ньютонның 2-ші заңын пайдалансақ, дененің қозғалыс теңдеуін мына түрде жазуға болады:


Гармоникалық тербелістердің жиілігі 1с ішіндегі тербелістер санын көрсетсе, циклдік жиілік секундтағы тербелістер санына тең болады, яғни:


Олай болса,осы өрнекті қозғалыс теңдеуімен салыстыра отырып алатынымыз:
Бұдан
екенін ескерсек, серіппелі маятниктің периоды мынаған тең болады:

Серіппелі маятниктің тербеліс периоды тек жүк массасы мен серіппенің қатаңдығына тәуелді болады.
Серіппелі маятниктің

Страницы: <<  <  2 | 3 | 4 | 5  >  >>
Рейтинг
Оцени!
Поделись конспектом: