Математика в творчестве

Страницы: <<  <  4 | 5 | 6 | 7 | 8  >  >>

воды эквивалентен 1 см, можно вполне ооснованно считать, что сторона Х малого флакона и сторонаZ большого флакона соответственно равны:

50 X, следовательно, х корень из 50 7,1 см;
125 Z , следовательно, Z корень из 125 11,2 см.





Почему пазлы из 2000 элементов не содержат ровно 2000 элементов
Не всегда можно создать предметы точно такой формы или из точно такого числа элементов, как этого хочется их автору. Многие из вас наверняка собирали головоломки-пазлы, но немногие подсчитывали точное число их элементов. Некоторые могут возразить, что подобный подсчёт не нужен, так ка число элементов всегда указано на коробке: 500, 1000, 2000, 3000, 5000, 8000. Однако изготовители головоломок обманывают нас, или, по меньшей мере, не говорят всей правды.
Пазлы из 500 элементов действительно содержат 500 элементов, но пазлы из 2000 элементов не содержат 2000 элементов, и чтобы убедиться в этом, не требуется подсчитывать их все. Все пазлы образуют форму прямоугольника, их элементы имеют различную форму, однако вырезаются из прямоугольного основания, в котором проделываются выступы и выемки. При изготовлении пазла из 2000 элементов нужно найти два целых числа, обозначающих число элементов на каждой стороне прямоугольника, произведение которых будет равно 2000. Так как 2000 2х2х2х2х5х5х5, возможны следующие варианты:
1х2000 2х1000 4х500 8х250 10х200 16х125 20х100 25х80 40х50.
Соотношение ширины и высоты собранного пазла должно быть гармоничным и приближаться к соотношению сторон листа стандартного формата А4, то есть примерно равно 1,4. Однако прямоугольники, длины сторон которых являются делителями числа 2000, будут либо слишком вытянутыми, либо слишком "квадратными":
50/40 1,2580/25 3,2
П

Страницы: <<  <  4 | 5 | 6 | 7 | 8  >  >>
Рейтинг
Оцени!
Поделись конспектом: