ерстия в тонкой стенке при постоянном напоре
Рассмотрим большой резервуар с жидкостью под давлением Р0, имеющий малое круглое отверстие в стенке на достаточно большой глубине Н0 от свободной поверхности (рис. 5. 1).
Рис. 5. 1. Истечение из резервуара через малое отверстие
Жидкость вытекает в воздушное пространство с давлением Р1. Пусть отверстие имеет форму, показанную на рис. 5. 2, а, т. е. выполнено в виде сверления в тонкой стенке без обработки входной кромки или имеет форму, показанную на рис. 5. 2, б, т. е. выполнено в толстой стенке, но с заострением входной кромки с внешней стороны. Струя, отрываясь от кромки отверстия, несколько сжимается (рис. 5. 2, а). Такое сжатие обусловлено движением жидкости от различных направлений, в том числе и от радиального движения по стенке, к осевому движению в струе.
Рис. 5. 2. Истечение через круглое отверстие
Степень сжатия оценивается коэффициентом сжатия.
где Sс и Sо - площади поперечного сечения струи и отверстия соответственно; dс и dо - диаметры струи и отверстия соответственно.
Скорость истечения жидкости через отверстие такое отверстие
где Н - напор жидкости, определяется как
φ- коэффициент скорости
где α - коэффициент Кориолиса;
ζ- коэффициент сопротивления отверстия.
Расход жидкости определяется как произведение действительной скорости истечения на фактическую площадь сечения:
Произведение ε и φ принято обозначать буквой и называть коэффициентом расхода, т. е. μ εφ.
В итоге получаем расход
где ΔР - расчетная разность давлений, под действием которой происходит истечение.
При помощи этого выражения решается основная задача - определяется расход.
Значение коэффициента сжатия ε, сопротивления ζ,
Страницы: << < 51 | 52 | 53 | 54 | 55 > >>